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Abstract

The effect of different Monte Carlo move sets on the folding kinetics of lattice polymer chains is studied from the geometry of the conformation-
network. The networks have the characteristics of small-world: the local connections are more clustered than that of the corresponding random
lattices, and the characteristic path lengths increase logarithmically with the number of nodes. One of the elementary moves, rigid rotation, has
drastic effect on the geometric properties of the network. The move increases greatly the connections and reduces significantly the shortest path
lengths between conformations. Including rigid rotation to the move set results in the increase of the dimensionality of the conformation space to
the value about 4.
© 2006 Elsevier B.V. All rights reserved.
Protein folding is a complex process for which, a sequence
of amino acids folds into a unique and stable structure in a
relatively short time [1]. The lattice models have been used
widely as coarse-grained models for the theoretical study of
folding process [2–7]. In the lattice models, protein is viewed
as a chain of m monomers, and the conformations are given
by all possible self-avoiding walks of the chain on a two or
three-dimensional lattice. The energy of a conformation, in gen-
eral, depends on the number of intrachain contacts, and how
to assign the contact energy is model dependent. The kinetics
of folding process can then be studied by Monte Carlo sim-
ulations for which, a move set is designed for the change of
conformations. In principle, different move sets, satisfying the
requirement of ergodicity, should reach the same equilibrium
canonical distribution after sufficiently long time simulations.
However, different move sets may yield different perspectives
of folding kinetics. Chan and Dill analyzed the folding kinetics
of two different move sets for 2D homo- and hetero-polymers
by using the Metropolis transfer matrix method [5,6]. Their
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results indicate that a move set adopted for the study affects
strongly the kinetic sequence of foldings and the shape of the
energy landscape. Same conclusions were also given by Hoang
and Cieplak [8] via the comparison between the dynamics of
three different move sets. Thus, understanding the nature of
a move set is essential for the interpretation of simulation re-
sults.

In this Letter, we explore the characteristics of different
move sets via the analyses of the corresponding conformation-
networks [9,10] for the 2D homopolymers with monomers
m � 16. Though the chain lengths considered are relatively
short, the networks can be constructed by exact enumeration.
Scala, Amaral, and Barthélémy studied various networks ob-
tained from the mappings of a particular conformation space,
and showed that the geometric properties are similar to those of
small-world networks [10]. This leads to the question, whether
the conformation-networks obtained from different move sets
all show the small-world characteristics. There appears two es-
sential characteristics for a small-world network: (i) the local
connection is more cliquy than that of random lattices, and
(ii) the characteristic path length increases logarithmically with
the number of nodes [11,12]. Thus, firstly we analyze the char-
acteristic path lengths and clustering coefficients of the net-
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Fig. 1. Examples of typical Monte Carlo moves: (a) end flip, (b) corner shift,
(c) crankshaft move, and (d) rigid rotation. The current conformation is shown
in thick lines, and possible new conformations are shown in broken lines.

works. To further differentiate the networks, we compute and
compare the degree distributions of a node, the correlations be-
tween degrees of nearest-neighbors, and the distributions of the
distances between two nodes. Finally, we also discuss the sta-
bility of the networks.

For the dynamical simulations of lattice polymers, the typi-
cal elementary moves include the end flip (ef), corner shift (cs),
crankshaft (cr) and the rigid rotation (rr), as shown in Fig. 1.
Here, some specially designed moves, such as snake move [8],
are excluded from the consideration. We focus the study on the
move sets S1, S2, and S3, defined as follows. The conventional
move set S1 consists of ef, cs and cr [7,13,14], based on lo-
cality. However, the ergodicity cannot be generally satisfied for
S1 [5,6,8]. In two dimensions, it prohibits the reaching of one
conformation from the others for 16 monomers, and the num-
ber of such conformations increases rapidly for more monomers
and/or dimensions. The problem can be remedied by involving
moves of rr type which have been realized in some simple dif-
fusive motions for groups of monomers [15]. While ef itself can
be viewed as short-scale rigid rotation, an ergodic move set, say
S2, can be achieved by simply combining ef with rr. Finally, the
ergodic move set S3 contains all the moves of four types.

For the construction of the network associated with a move
set, firstly we identify all possible self-avoiding conformations
of the chain of m monomers as the nodes of the network as-
sociated with a move set. The node-number is denoted as Nm

for which, the degeneracy caused by the rotation and the mir-
ror symmetry has been excluded. Two nodes are then connected
by an edge if a move of the given move set can transfer one to
the other. Thus, different move sets yield different edge distri-
butions between the nodes and hence different networks. We
refer the edge-number as Em. The values of Nm and Em for
three networks with various numbers of monomers m are listed
in Table 1. Note that because all edges are undirected and have
the same weight, the networks can be viewed as the folding net-
works in high temperature limit.
Table 1
Various geometric quantities of the conformation-networks S1, S2, and S3
with different number of monomers m: the numbers of nodes N , the num-
bers of edges E, the average edge number per node 〈k〉, the characteristic path
length 〈l〉, and the average of clustering coefficients C̄

m 10 12 14 16

N 2034 15037 110188 802075
ES1 6966 57451 464687 3702485
ES2 13194 117839 1005304 8314161
ES3 16397 147673 1268544 10554679
〈k〉S1 6.8496 7.6413 8.4344 9.2323
〈k〉S2 12.9735 15.6732 18.2471 20.7316
〈k〉S3 16.1229 19.6413 23.0251 26.3184
〈l〉S1 7.6369 11.0731 15.0046 19.4403
〈l〉S2 4.5953 5.8286 7.0726 8.3236
〈l〉S3 3.9555 4.9611 5.9723 6.9869
C̄S1 0.1092 0.0861 0.0684 0.0554
C̄S2 0.0699 0.0523 0.0434 0.0369
C̄S3 0.0666 0.0471 0.0366 0.0229

The edge-number associated with a node is also referred as
the degree of the node, and the degree distribution P(k) is de-
fined as the probability for a node to have degree k. Then, the
mean degree of a network is

(1)〈k〉 =
∑

k

kP (k),

which is equal to 2Em/Nm. The 〈k〉 values of different net-
works with various numbers of monomers m are given in
Table 1. The scaling of 〈k〉 with Nm behaves as 〈k〉 = a +
b log(Nm) with (a, b) = (3.79,0.92) for S1, (3.07,2.99) for S2,
and (2.77,4.01) for S3, as shown in the insets of Fig. 2. Thus,
the mean degree of the move set S2 (S3) is about two (two and
half) times the value of S1. A larger value of the mean degree
of a network should give more throughway accessibility to the
native conformation and reduce the chance of being trapped in
local minimum in the folding process [5,6]. The results of P(k)

vs. �k = k − 〈k〉 are shown in Fig. 2 for S1, S2, and S3, re-
spectively, with m = 10, 12, 14, and 16. Scala et. al. studied
the sub-networks of S1 for which, a sub-network is specified by
a given end-to-end distance and generated by the moves, cor-
ner shift and crankshaft move [10]. Their results showed that
the form of P(k) is Gaussian. Then, we employ the Gaussian
function,

(2)P(k) = 1√
2πσ

exp

[
− (k − 〈k〉)2

2σ 2

]
,

to fit the data of S1, S2, and S3, and the best fittings are given as
the solid lines in Fig. 2. For S1, the distribution agrees with the
above Gaussian form in which, the variances of different m are
σ = (0.5748)

√
Nm. Comparing with the result of S1, the distri-

bution for S2, shown in Fig. 2(b), does not fit so well, and the
result of S3, shown in Fig. 2(c), exhibits significant deviation,
but obviously the distributions are not scale-free [16–18].

The deviation from the Gaussian form for the degree dis-
tributions reflects in the asymmetry between the distributions
of low and high degrees, and the asymmetry can be clarified
further by measuring the degree–degree correlations. The corre-
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Fig. 2. The degree distribution, P(k), versus �k = k − 〈k〉 for the networks
associated with different move sets: (a) S1, (b) S2, and (c) S3. Here, 〈k〉 is
the average edge number per node, and the solid lines are the best fittings of
the Gaussian function given in the text. For each network, the plot of 〈k〉 vs.
log(Nm) for the node number Nm with the monomer number m ranged from 8
to 16 is shown in the inset, and the straight solid line corresponds to the relation
〈k〉 = a + b log(Nm) with the values of a and b given in the text.

lations are characterized by a joint probability P(k1, k2), which
is defined as the probability of a node with the degree k1 con-
nected by an edge to another node with degree k2. Explicitly,
we write

(3)P(k1, k2) = 1

2Em

Nm∑
i,j=1

δ(ki − k1)aij δ(kj − k2),

where ki (kj ) is the degree of node i (j ); and aij is 1 if nodes
i and j are connected by an edge, and 0 otherwise. Here, the
normalization condition,

(4)
∑
k1,k2

P(k1, k2) = 1,

is imposed. For the absence of correlations, such as the classical
random graphs and many other equilibrium networks, the joint
probability factorizes, P ∗(k1, k2) ∝ k1P(k1)k2P(k2) [19,20].
After a proper normalization as Eq. (4), we obtain

(5)P ∗(k1, k2) = 1

A

{
k1P(k1)k2P(k2)

[
1 + δ(k1 − k2)

]}
,

with the normalization constant A = 〈k〉2 + ∑
k k2P 2(k). For

the conformation-networks, elementary moves are independent
of one another, and we expect both Eqs. (3) and (4) give about
the same result. Owing to the poor statistics for the joint prob-
ability, Pastor-Satorras, Vazquez, and Vespignani [19] intro-
duced the average degree of the connected neighbors of a node
as a function of the degree of this node, denoted by k̄(k) and
defined as

(6)k̄(k) =
∑
k1

k1
[
P(k1, k) + P(k, k1)

]
.

Then, the corresponding k̄∗(k) for the absence of correlations
is

(7)k̄∗(k) = 1

A

[
2
〈
k2〉kP (k)

]
with

(8)
〈
k2〉 = ∑

k

k2P(k).

We then compare k̄(k) with k̄∗(k) for S1, S2, and S3 with
m = 16, and the plots of k̄(k) − k̄∗(k) vs. k − 〈k〉 are shown in
Fig. 3. The properties revealed from the results are as follows.
All networks, as expected, have little correlations for which,
the values are positive (negative) for large (small) k values. The
enhance (positive correlation) and the depletion (negative corre-
lation) in two regions appear almost in a symmetric way for S1,
but quite asymmetric for S3. The asymmetry results from the
fact that the additional edges caused by the elementary move rr
increases drastically for only few nodes which have high degree
in S1 and the additional number is below the average for most
nodes which have low or medium degree. This explains the sig-
nificant deviation of the degree distribution from the Gaussian
form.

The degree of local connections of the networks can be mea-
sured by the clustering coefficients. The clustering coefficient
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Fig. 3. The plot of k̄(k)− k̄∗(k) vs. k −〈k〉 for the networks S1, S2, and S3 with
m = 16. Here, k̄(k) is the average degree of the connected neighbors of a node
with degree k, and k̄∗(k) is the result of k̄(k) for the absence of correlations.

of the node i is defined as

(9)Ci = 2Σki

ki(ki + 1)
,

where ki is the degree and Σki
is the existent edge-number

among the ki nearest neighbors of the node i. Then, the de-
gree of local connections of a network can be characterized by
the average of the clustering coefficients of the nodes, denoted
by C̄. The C̄ values for S1, S2, and S3 with different m values
are listed in Table 1. The data shows C̄S1 > C̄S2 > C̄S3 . For the
network with the node-number N and the average edge-number
〈k〉, the corresponding random network has the average cluster-
ing coefficient C̄ran ≈ 〈k〉/N . The results of the ratios C̄/C̄ran
vs. the node-number Nm for S1, S2, and S3 are shown in Fig. 4
with logarithmic scales. Our results indicate that the average
clustering coefficients of the conformation-networks are much
larger than that of random networks. In particular, the network
of S1 is less random than that of S2 and S3. Thus, the kinemat-
ics based on S1 have more chances to be trapped in some cliquy
conformations than those based on S2 and S3.

We may define the minimum number of elementary moves
required for transferring one node to the other as the distance
between the two [5,6]. Thus, the distance l between pairs of
nodes is the minimum number of edges required to connect the
two nodes. The distribution P(l) gives the probability of dis-
tance l between two randomly chosen nodes. The characteristic
length of the network can be defined as the average of the dis-
tances of all node-pairs,

(10)〈l〉 =
∑

l

lP (l).

The values of 〈l〉 for S1, S2, and S3 with different m values
are listed in Table 1. The characteristic length of S2 is about
half of the length of S1. For the distributions P(l), the scaled
plots of Pscaled(l) = √

2π σP (l) vs. �lscaled = (l − 〈l〉)/√2σ

are shown in Fig. 5, where the solid lines are obtained by setting
Fig. 4. The ratios of the average clustering coefficients, C̄, of the networks S1,
S2, and S3 to the average clustering coefficients of the corresponding random
networks C̄ran versus log(Nm) with the node number Nm and the monomer
number m ranged from 8 to 16.

the variances σ as σS1 = 0.0489(m)1.7, σS2 = 0.3057(m)0.6,
and σS3 = 0.5057(m)0.6, for m monomers. The above variances
are determined by first finding the least square fit to Eq. (2) to
obtain σ(m), and then taking the average over σ(m) of differ-
ent m. The distributions all agree with the Gaussian form of
Eq. (2). The variance of P(l) for S2 is much smaller than that
for S1, and this implies that the distance between two nodes
does not vary much for the networks based on S2 and S3.

For the small-world networks, there exists a cross-over size
N∗ ∼ p−1 such that the characteristic lengths 〈l〉 obey the
finite-size scaling law [21–23],

(11)〈l〉 = (
N∗)1/d

f

(
N

N∗

)
,

where d is the dimensionality of the underlying regular lattice,
and f (x) is a scaling function with the limits, f (x) ∼ x1/d

for x 	 1 and f (x) ∼ lnx for x 
 1. By taking the hypoth-
esis that the conformation-network may be a small-world net-
work, we use the scaling form of Eq. (11) to fit the data, and
the results are shown in Fig. 6. Note that we do not take the
data from m � 4 for which the node-number N is less than 5,
and the statistics for the region of N/N∗ 	 1 is very poor
in our results. However, the fittings indicate that (i) the val-
ues of 〈l〉 increase logarithmically with the node-number N

for large N ; (ii) we estimate 1/d from the fittings of small
N as 0.3427, 0.2377, and 0.2155 for the networks S1, S2,
and S3, and then the dimensions d are about 3, 4, and 4.5,
respectively; and (iii) the cross-over region N∗(m) is around
m = 9–11 (p ∼ 10−3–10−4) for S1 and 8 (p ∼ 10−3) for S2
and S3. But, based on the above results, we may conclude
that the dimensionality of the conformation-space is d � 3, and
the cross-over region become narrower when the dimension-
ality gets larger. The 〈l〉 value may be viewed as the diame-
ter of a network [17]. Then, while as the dimension increases
for the networks from S1 to S3 sequentially, the diameter of
the network decreases. We notice that the dimension obtained
by Scala, Amaral, and Barthélémy is 2 [10], and our result is
about 3 for the network associated with S1. The difference is
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Fig. 5. The scaled result of the distribution function of the shortest path lengths,
Pscaled(l) = √

2π σP (l), versus �lscaled = (l − 〈l〉)/√2σ for (a) S1, (b) S2,
and (c) S3 with m = 10, 12, 14, and 16. The averages of the shortest path lengths
for all node-pairs, 〈l〉, are given in Table 1, and the variances σ are given in the
text. The solid lines are the results of the Gaussian form.

Fig. 6. The plots of the characteristic path length 〈l〉 versus the logarithm of the
node-number log(Nm), for the networks associated with different move sets,
(a) S1, (b) S2, and (c) S3, where the monomer number m ranges from 5 to 16.
The insets are the plots of log(〈l〉) versus log(Nm) for the same data. The solid
lines are the results of the limiting scaling forms given in the text.
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Fig. 7. The fraction of nodes contained in the largest cluster, S, and the average
node number, 〈s〉, contained in the fragmentary clusters excluding the largest
one versus the fraction f of the nodes removed for (a) attack and (b) error
tolerance of the networks S1, S2, and S3 with m = 16.

due to the fact that the previous results are based on the net-
works with fixed end-to-end distances of the chain, such net-
works exclude the elementary move ef and are sub-networks of
the networks of S1.

Finally, we analyze the ability of attack and error tolerance
of the network by studying the fragmentation caused by node-
removal [24]. The nodes with higher degrees of connections
are removed preferentially for the analysis of attack tolerance;
and the nodes are removed randomly for the error tolerance.
By removing a fraction f of the nodes, we measure the frac-
tion of nodes contained in the largest cluster, S, and the average
node number, 〈s〉, contained in the fragmentary clusters exclud-
ing the largest one. If only the removed nodes were missing
from without further breaking the largest cluster, the S value
decreases from 1 down to 0 along the diagonal line as f in-
creases from 0 up to 1; and the 〈s〉 value remains to be one for
0 < f � 1 if the removed nodes were isolated from each other.
For most networks, we may expect that while as the S values
start to decrease more rapidly than the diagonal line at some
fraction fm, and drop to zero at the critical fraction fc; the 〈s〉
value start to increase more rapidly from 〈s〉 = 1 at fm, and
reach the maximum at fc. The results of S and 〈s〉 as function
of f are shown in Fig. 7 for the networks S1, S2, and S3 with
m = 16. Our results show that the fc value is very closed to 1,
and the stability of the networks is very analogous to random
networks.

In summary, we divide the frequently used Monte Carlo
moves into three different move sets, and construct the corre-
sponding conformation-networks. The networks all have the
characteristics of small-world: (i) the local neighborhood is
more cliquy than that of random networks, and (ii) the char-
acteristic path length increases logarithmically with the number
of nodes. The dimensionalities of the conformation-spaces are
d � 3. Our analyses also indicate that the networks are as ro-
bust as random graphs. Among different elementary moves, the
rigid rotation has drastic effect on the geometric properties of
the network: (i) it renders the connection distribution to be non-
Gaussian, (ii) it reduces greatly the characteristic path length,
and (iii) it drives the network more closer to random networks.
Thus, the rigid rotation may change the folding kinetics signifi-
cantly from that of the local moves, corner shift and crankshaft
move.
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