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Abstract

The GPS provides accurate positioning and timing information that is useful in various applications. A new adaptive neural
predictor for GPS jamming suppression applications is proposed. The effective and computationally efficient square-root ex-
tended Kalman filter (SREKF) algorithm is adopted to adjust the synaptic weights in the nonlinear recurrent architecture and
thereby estimate the stationary and non-stationary narrowband/FM waveforms. Cholesky factorization is employed in Riccati
recursion to improve numerical stability because of the propagation of round-off errors in conventional KF equations. The
main characteristics of the proposed SREKF-based canceller are their rapid convergence and favorable tracking performance.
Simulation results reveal that its SNR improvement factor exceeds the factors of conventional LMS, RLS, ENA and TLFN

filters in single-tone CWI, multi-tone CWI, pulse CWI and FM jamming environments, respectively.
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1. Introduction

GPS satellites broadcast ranging codes and navigation
data using the direct sequence spread spectrum (DS-SS).
Although DS-SS can tolerate low-power narrowband and
wideband obstacles, with its near 43 dB processing gain, it
cannot cope with high-power interference. Methods for im-
proving system performance by preprocessing to eliminate
intentional or unintentional jamming will be investigated.

According to the GPS signal characteristics, the
interference-to-noise ratio (INR) of over 20 dB will prevent
the receiver from being able to obtain information on the
position. Several approaches in the time- and frequency
domains have been employed to mitigate narrowband inter-
ference [2,4,11]. The enhanced nonlinear adaptive (ENA)
algorithm [2] that is developed to suppress a narrowband
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signal outperforms existing linear/nonlinear adaptive filters.
The situation becomes more complicated in the presence of
wideband interferences [8,9]. Amin proposed a method for
rejecting linear FM (chirp-like) interference in GPS commu-
nication, based on the time—frequency (TF) representation
of the observed signal. The approach consists of evaluating
the Wigner—Ville distribution (WVD) of the received signal
and then rejecting the undesired signal using the method
of subspace projection. The estimation of the instantaneous
frequency plays an import role in this FM suppression
technique. However, errors in instantaneous frequency may
occur under various conditions due to a decrease in inter-
ference power, the presence of AM [10] or high levels of
cross-terms in TF domain.

The neural network (NN) is a superior nonlinear fil-
tering method for tracking and canceling interference.
The pipelined recurrent NN (PRNN) [4] improved SNR
more when the statistics and number of CDMA users are


http://www.elsevier.de/aeue
mailto:wlmao@nfu.edu.tw

W.-L. Mao / Int. J. Electron. Commun. (AEU) 62 (2008) 216—222 217

unknown to the receivers. The fully connected RNNs, which
approximate IIR filters, have been demonstrated to outper-
form the time-lagged feedforward network (TLEN) [6] in
non-stationary signal prediction, pattern classification and
channel equalization [5,7]. However, conventional gradient-
based (GD) approaches such as real-time recurrent learning
algorithms use first-order derivative information and con-
verge more slowly than the second-order derivative-based
techniques, such as Kalman filter (KF)-trained methods. The
KF-based algorithm with both rapid tracking rate and a
small prediction error can be used effectively to estimate
and remove chirp and narrowband interference in DS-SS
applications.

This work presents an SREKF-based recurrent neural
predictor (RNP) for GPS anti-jamming applications. The
received signal is modeled as the sum of a GPS spread
spectrum signal, additive white Gaussian noise and an
interfering signal. The adaptive neural filter is employed
to predict accurately the narrowband and FM jamming
waveforms based on the square-root extended Kalman fil-
ter (SREKF) algorithm, which has superior convergence
capability. Cholesky factorization is adopted in the re-
cursive KF procedure to solve the Riccati equations; it
improves the numerical stability. A detailed computational
analysis is conducted and the storage requirements of the
SREKF method are examined. The performance of RNP
trained with SREKF is evaluated and compared with that
of conventional LMS, RLS ENA and TLFN methods in
terms of the SNR improvement ratio and the mean-squared
prediction error (MSPE) for the interference channels of
interest.

2. System description

Fig. 1 presents a simplified block diagram of an anti-
jamming GPS system. The observed spread spectrum signal
is assumed to have the form [1]:

K
r(t) =[D(t) ® CA(D)] cos(wr1t) + ) ji(t) +n(t)
k=1

=8@) + J(@) +n(), (D

where D(¢) is the binary data with duration 7' (T = 20 ms).
C A(t) represents the binary Gold Code with chip duration
T. (Re. =1/T. = 1.023MHz). w1 = 2nfy; is the L1 car-
rier frequency (1575.42 MHz). n(¢) is additive white Gaus-
sian noise with variance ¢>. The jamming signals j (f) may
be friendly or intentional. Unintentional sources originate
from RF transmitters, which are either onboard an aircraft
or at nearby ground RF transmission stations. Intentional
signals are always hostile. These three counterparts are as-
sumed to be mutually independent. The jamming source of
interest has a bandwidth that is much narrower than the

GPS bandwidth (2.046 MHz). Four forms of interference are
investigated.

(1) Single-tone continuous wave interference (CWI ):
Jewi(t) = J cos[(wr1 + wg)t + 0], 2

where J denotes the amplitude and w, is its offset fre-
quency from the central frequency of the spread spec-
trum signal. 0 is the random phase, which is uniformly
distributed over the interval [0, 27).

(2) Multi-tone CWI (MCWI):

1
Tmewi (1) =Y J; cosl(@p1 + @)t + 0], 3)

i=1

where J;, 0; and w,, represent the amplitude, random

phase and frequency offset, respectively, of the ith in-

terferer, and [ is the number of narrowband interferers.
(3) Pulsed CWI (PCWI):

Jcos(wp1 + wgy)t,
Jpcwi(t) :{

0,
(I=DNr<k<(—1)Nr+ Ny, 4)
(! —=DN7 + N1 <k<IN7, (©)

where the on interval is N7, seconds long and the off

interval is (N7 — N1)T. seconds long. The case in which

N7 and N; are much greater than unity is considered.
(4) Linear FM:

o
J(0) = J cos | (@1 + 01 + 2] ©)
where w4 and o4 represent the offset frequency and the
frequency rate, respectively.

The received signal is band-pass filtered, amplified and down
converted. The received signal is sampled at the chirp rate to
simplify the analysis further. The observation at sample k is

r(k) = S(k) + j (k) + n(k). @)

Fig. 1 indicates that the proposed interference canceller that
consists of a RNP and an adder is utilized to suppress the
various jamming signals. This approach exploits the fact that
the GPS spreading spectrum signals are difficult to track,
whereas a large class of interferences, such as narrowband
and FM signals, can be tracked and then canceled. The in-
terference j(k) can be successfully estimated using RNP
architecture whose output is the narrowband component of
the input signal. Following the subtraction from the received
waveform, the output of canceller z(k) is

z2(k) = r(k) — j(k)
= S(k) 4+ n(k) + j (k) — jk)
~ S(k) + n(k), (8)
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Fig. 1. GPS anti-jamming system.

where z(k) is the broadband component of the received sig-
nal. It can be viewed as an almost interference-free signal
and is fed into the correlator for dispreading GPS.

3. Adaptive SREKF-based RNP
3.1. RNN dynamics

Fig. 2 presents in detail the structure of an RNP. Specif-
ically, the module comprises a fully connected RNP with
N hidden neurons, P external input neurons and one output
neuron. In each neuron, one-unit delayed version outputs
of hidden neurons are assumed to be fed back to the input.
Besides the P + N inputs, one bias input whose value is al-
ways at 41 is included. The RNN can be described by the
following pair of nonlinear state space equations:

X(k+ 1) = D(W,X(k) + WpR(k))

=[p(WIUK)) ... pWRUK)]", ©9)
y(k) = CX(k) (10)
with
R(k):[],r(k),r(k—1),...,r(k—P+1)](TP+1)X1,
(11)
X(k) = [x1 (k). ..., xn(0)]%,. (12)
W=[W, Wgl"=[W, ... W, ... Wyl (13)
Uk =[X"(k) RT0]IL, . (14)

where W, represents the synaptic weights of the N neurons
in the hidden layer that are connected to the feedback nodes
in the input layer, and matrix W}, represents the synaptic
weights of these hidden neurons that are connected to the
input nodes. X (k) is the state vector of an RNN, and y(k)
denotes the corresponding output of the system. Cisa 1 x N
matrix, which represents the synaptic weights of the out-
put node connected to the hidden neurons. The nonlinear

function ¢ (x)=tanh(a *x/2) is the sigmoid activation func-
tion of a hidden neuron, and « is the gain of a neuron.

3.2. SREKF algorithm

An EKF-based learning algorithm is a second-order,
recursive procedure that is particularly effective in training
NN architectures. This learning algorithm can be viewed
as a means of estimating the state of a nonlinear system,
in which the actual response in the output layer is com-
pared with a desired response at each instant. The unforced
dynamic and observation equations [5] are

wk) =w(k — 1),
y(k) =h(w(k)) + v(k),

15)
(16)

where w(k) is an L x 1 vector that is obtained by rearranging
the weight matrix W (k) into a column vector, and y(k) is an
N x 1 observation vector. v(k) is an observation noise vec-
tor with PDF v(k) ~ N(0, Q) (zero-mean white Gaussian
noise vector). The nonlinear function k(w(k)) is assumed to
be differentiable and represents a mapping between two
Euclidean vector spaces. The Jacobian matrix is defined
as the partial derivatives N outputs with respect to the L
weights. Hence

B 6h1 ahl a/’ll T
ow; Owp owp,
Ohy  Ohy ohy
Shw(k) | 3w, ows owr
Hk)=———=| w1 Ow2 wL 17
(k) W) A7)
Ohy Ohy Ohy
L (’jwl awz 6wL .

The KF-based algorithm is formulated as a sequential mini-
mum mean square error (MMSE) problem, where the weight
vector w(k) is adjusted by minimizing the output power



W.-L. Mao / Int. J. Electron. Commun. (AEU) 62 (2008) 216—222 219

x1(k)
Xo(K) X1(k+1)
PO
o | teeee-e- Xo(k+1)
Xy (K) .
1 y(K)=j(k+1)
rk-P+1)  —»7 X/ N\ g >
( ) . 2w
. s
¢ r(k+1)
r(k=1) Xy (k+1)
r(k)
Input layer Hidden layer Output layer

Fig. 2. Block diagram of the recurrent neural predictor (RNP).

using all data so far observed. The cost function is defined as

k k
min Y 212 = min Y Iy () —5()I, (18)

J=1 Jj=1

where z(j) is the error vector, y(j) is the actual output of
network, and y(j) is the target output. The conventional EKF
algorithm is extensionally used to estimate the parameters,
but suffers from the serious numerical problem that the
error covariance matrix may not remain positive definite.
The SREKF, which can effectively mitigate the divergence
difficulty, is applied herein. The SREKF solution is derived
and formulated by the following recursions:

F(k) =P"*()H" (k), (19)
G(k) = [FT(bF (k) + Q(k)]'2, (20)
K(k) =P ()F()GK) TG k), 21)
Wik + 1) =w(k) + K& [y(Ohw(K))], (22)

P2k + 1) =PY2 (k) — P2 (l)F (k)G T (k)
x [G(k) + Q2 ()1~ 'F (k), (23)

where K(k) is the Kalman gain matrix adopted to update
the weight matrix and the error covariance matrix. w(k + 1)
is the estimate of the weight vector w(k + 1) given the
data observed up to time k and P(k) is the error covari-
ance matrix. The covariance square-root matrices can be ob-
tained by Cholesky decomposition: P(k) = P'2(k)PT/2 (k)
and Q(k)=Q'/2(k)Q"/?(k) x P/2(k) and Q'/2 (k) are lower
triangular square root matrices, and PT/2(k) and Q'/?(k)
are their transposes.

3.3. Computational complexity

The detailed results of the complexity and memory
analyses of the SREKF algorithm are obtained in terms
of the number of floating point operations (flops) [6].
The required number of flops in the SREKF method is
O(4N2ZL5 + %NL2 + %L3 + %N3), whereas the storage
requirement is O(L? + N% + LN) for the F(k), G(k) and
P!/2(k) matrices. Cholesky factorization is commonly the
most computationally burdensome step in numerically solv-
ing a positive definite matrix. The computational complexity
ofan N x N Q matrix is O(N?) flops.

4. Simulation results

The simulation results of the SREKF-based RNP are ob-
tained to confirm the jamming rejection characteristics. The
performance is expressed in terms of SNR improvement and
MSPE.

(1) SNR improvement. The metric adopted to verify the
steady-state performance is the SNR improvement,
which is defined in [2] and given by

E{|r (k) — S(k)[%}

SNRimprovement = 10log [m

} (dB).
(24)

(2) Mean-squared prediction error (MSPE, Vyspr): The
MSPE is used as an index to evaluate the conver-
gence rate of transient responses for various algorithms.
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Fig. 3. Single-tone CWI suppression performances of: (a) SNR improvement vs. INR and (b) averaged MSPE vs. the number of iterations.
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Fig. 4. MCWI suppression performances of: (a) SNR improvement vs. INR and (b) averaged MSPE vs. the number of iterations.

It is defined as

Vi = — (SIMZM 32<k)) (25)
SRpum \ = ’
100n

Vaspe(n) = log | 1o | > v ]|, @6
i=100(n—1)+1

where SIM,un, is the total number of simulations (which
is 500 here) and e; (k) is the predicted error of the kth
iteration for the ith run.

In this simulation, the received signal is band-pass filtered,
amplified and down converted to IF and then digitized. The

IF is fixed at 1.25 MHz, and a sampling frequency of 5 MHz
is selected. D(k) is binomially distributed with a value of
+1, and CA(k) is randomly selected with uniform proba-
bility from 24 PRN codes of GPS. The variance of thermal
noise n(k) is held constant at > =0.01 relative to the signal
S(k), the power of which is 1.0. Five techniques are com-
pared; they are LMS, RLS, ENA [2], TLFN-SREKF and
RNP-SREKEF. The tap numbers of the LMS, RLS and ENA
filters are eight. The adaptation constant of LMS is set to
0.01, and the forgetting factors of RLS and ENA are set to
0.9. The TLFN comprises eight input neurons, a multilayer
perceptron with 14 hidden neurons, and one linear output
neuron. The RNP consists of eight external input neurons, a
hidden layer of six recurrent neurons and one linear output
neuron. Both TLFN and RNP structures are developed with
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Fig. 5. PCWI suppression performances of (a) SNR improvement vs. INR, (b) averaged MSPE vs. the number of iterations.
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Fig. 6. Linear FM suppression performances of: (a) SNR improvement vs. INR and (b) averaged MSPE vs. the number of iterations.

the same number of adjustable weights to enable fair perfor-
mance comparison. Also, the initial parameters are selected
as w(k)=0 (0 is a zero vector), P(k) =0.011I (I is an identity
matrix) and Q = 0.01. The simulation results are ensemble
averaged over 100 independent runs, and 2000 data points
are obtained in each run.

4.1. Stationary jamming signals

Figs. 3 and 4 present the SNR improvements and averaged
MSPE for single- and multi-tone CWIs, respectively. The
single-tone CWI offset frequency is set to w4 = 1.2 MHz,
and the input INR is varied from 20 to 50dB. On average,

the RNP-SREKF algorithm yields SNR improvements of
8.15, 7.80, 5.18 and 2.02 dB over the LMS, RLS, ENA and
TLFN-SREKF methods, respectively. Fig. 3(b) shows that
the RNP-SREKF scheme is also superior in both conver-
gence speed and prediction error. The MSPE can decline
significantly to 10™* in 250 iterations, while the other meth-
ods reach the steady state after 400 iterations and have larger
MSPE results. In the second case, a three-tone narrowband
jammer is adopted as the severe GPS communication chan-
nel. The offset frequencies are set to 0.8, 1.2 and 1.8 MHz.
The interfering waveforms can be rejected effectively by the
SREKF-training method; the predictor supports faster recur-
sive procedures and learning performance, which are supe-
rior to those provided by other methods in the presence of
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stationary jamming signals. The RNP-SREKF scheme of-
fers SNR improvements of 8.60, 8.16, 5.42 and 2.61 dB over
these four methods, respectively.

4.2. Non-stationary jamming signal

In this PCWI experiment, the frequency offset is set to
0.5MHz, the on interval to 10007; and the off interval to
5007;. Fig. 5 indicates that the proposed neural predictor
offers a faster convergence rate and an SNR improvement
over conventional schemes. The SREKF suppression predic-
tor yields SNRs that are 9.22, 9.02, 5.26 and 2.26 dB higher
than those of the LMS, RLS, ENA and TLFEN-SREKF meth-
ods, respectively.

4.3. Linear FM signal

The frequency of the FM signal increases linearly at the
beginning of each sweeping interval and is reset at the end
of each interval. The frequency rate is set to 10 MHz/s; the
sweep bandwidth is set to 1.5 kHz, and the sweeping period
includes 750 samples long. Since the SREKF procedure em-
ploys an adaptive learning rate (i.e. Kalman gain), in Fig. 6,
the convergence is faster and the estimation error is smaller
than those obtained by the other methods. The RNP-SREKF
yields an SNR that is 3.81, 5.81, 10.03 and 8.24dB bet-
ter than those of the LMS, RLS, ENA and TLEN-SREKF
methods, respectively.

5. Conclusions

This study presents a new adaptive RNP trained with an
SREKF algorithm used to suppress GPS narrowband/FM
interference. The proposed canceller, with the powerful re-
current structure, can robustly estimate stationary and non-
stationary signals. The SREKF recursions were derived and
the corresponding computational analysis and storage re-
quirements presented. On average, the proposed predictor of-
fers SNR improvements of 27.14, 26.67, 26.62 and 24.59 dB
in the CWI, MCWI, PCWI and FM environments, respec-
tively. The proposed SREKF-based scheme indeed achieves
improved SNR and tracking capability over those of the
conventional adaptive filters in various interference circum-
stances.
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